Ryan's checkride

Richard

Final Approach
Joined
Feb 27, 2005
Messages
9,076
Location
West Coast Resistance
Display Name

Display name:
Ack...city life
For some reason I am quite interested in today's results. I think he made it and he's pretty tired right about now. Can't wait for the report.
 
Richard said:
For some reason I am quite interested in today's results. I think he made it and he's pretty tired right about now. Can't wait for the report.

Why, thank you for thinking of me, Richard. Your long distance good vibes must have carried the day. Here's my little write-up.

So. I wake up. Finally, checkride day. Honestly, I'm not terribly worried about this ride. The training has been good, my sim partner is competent, and I'm studied up for both the oral and the flight.

A type ride at Simuflite is a fairly long event. Not including a one-hour break for lunch, we start at 10:00 AM, and the schedule calls for us to be finished at 7:00PM. (We ended up using that entire time block.) I arrive about an hour early for one last quick refresher, and to add some more notes into my bound checklist. (This is fair game on the oral.)

I meet with Eddie. He's nervous, really nervous. He told me as the weeks progressed that he'd be a wreck on checkride day, and that turns out to be a pretty apt description. All attempts to calm him down seem to be ineffective, so I simply drop the subject.

This being my first type ride, the following things are new to me: 1) Being quizzed and checked as a crew from the beginning, and throughout, to the end. 2) Being stressed more for my sim partner, worried about screwing something up that would actually bust him. There's a high level of trust involved in this, because in many cases the guy being checked in the left seat is relying on the guy in the right seat to properly perform engine shutdowns, run checklists, set up and brief the approaches, and do a lot of other stuff with very clear black and white 'bust' lines (heh!). It's the job of the PIC to 'supervise' and make sure they're done correctly. The truth is, the FO has a more difficult job during training events because he's strictly dealing with emergencies, checklists, and setups, while the captain is strictly dealing with flying the airplane (and NOTHING else!) Yet, the FO isn't on the hook for anything while the other guy is being checked. It's quite different than the checkrides I've taken in the past, in which everything was done single pilot, and there was no second crewmember to help.

After some brief paperwork issues we start on the oral. The format is to alternate the questions between Eddie and I. The examiner, Nick, is friendly but also has the signature chiseled look and efficient mannerisms which almost invariably denote a former military man. I silently hope he's not low on his bust quota this month as he begins doling out the questions.

Which bus powers the APU? Which contactors are open when the Battery Isolate switch is used to select one of the two main batteries? Which bus is fire bottle #1 powered by? Fire bottle #2? What is the function of the Bus Tie switch? How many volts are batteries one, two, three, and four? The standby inverter is how many vA? What are the memory items for an engine fire? For a double generator failure? (For the record: 1. Panel lighting to standby. 2. Batt switch to 'Emerg.' 3. Verify Standby Inverter is armed and 'XE Fail' annunciator is out. 4. Power levers - reduce by 50 deg. ITT. 5. EECs to 'Manual.' 6. Load shed to maximum extent possible. Remember to turn off galley power!) Thrust reverser actuation limitations? Brake limitations? Rejected takeoffs above 90 knots? Function of the 2,300 PSI pressure maintaining valve? The pressure reducing valve? The full flow relief valve? At which PSI does that valve relieve hydraulic pressure?

This line of questioning continues for a couple of hours. Eddie misses a couple of easy questions early into the questioning and I fear he's heading for a meltdown, but he regains his composure and finishes strong.

The oral complete, we head for the sim. Again, we're being checked as a crew, so Nick briefs us on the ride and what to expect. We're going to fly two identical profiles; one for Eddie, one for me. We'll depart JFK, fly a SID to a holding fix northeast of the airport, and perform our airwork there (steep turns and approaches to stalls.) We'll head to LGA for approaches and end up at JFK again at the end of the ride.

Eddie decides to go first, so I'm sitting in the right seat performing all of the tasks of an SIC. When you're taking a checkride in a sim, it must be treated like a real airplane in every respect, from the startup to shutdown. The examiner may not double your groundspeed to speed up a leg, nor may he reposition you laterally or vertically. So from the get-go, we climb into a totally dark cockpit and use our flashlights to begin the "Before Starting Engines" checklist.

For type ratings, you're judged by the ATP PTS, so it's basically just an ATP checkride. It's worth noting that you're being judged not only for your ability to stay within PTS standards, but (more importantly, in fact) for your CRM. Bad cockpit procedures can bust you here, even if the airplane doesn't stray outside the bounds of the PTS and the outcome of the maneuver is never in doubt. Since we've been working together as a crew for eight sim sessions, this is second nature for us at this point.

Now, I could bore you and repeat the rides twice, but I'll just sum up Eddie's ride and then tell you how it went for me. In short, he flew beautifully. He can really hand fly that sim like nobody's business, and he passed easily. I was happy for him, and proud. (Also, VERY relieved that I didn't do something to screw him up, like load in the wrong freq on a radio, or give him the wrong altitude on a plate.)

My turn in the left seat. I call for the Before Start checklist and we fire up the APU. The fire bell rings out - APU fire! Memory items are easy here. Shut down the APU and wait ten seconds. If the fire bell does not deactivate by that time, fire your one (and only) fire bottle. We turn off the APU, get it back (Mr. QuickWrench fixed it) and fire up the engines. I get a hot start on #2 (which is started first) and a hung start on #1. The hot start is taken care of by shutting the HP cock (high pressure fuel valve - gotta love the 'cocks' - it's Brit terminology) and letting the starter motor for another twently seconds or so as the ITTs wind back down. The hung start is no big deal, we don't get any N1 indication so we never introduce fuel and shut off the starter. Voila, We're done with the start abnormals. We get our clearance - which essentially involves turning to a heading after departure, climbing to 3,000 feet, and intercepting the JFK R-044 outbound - and taxi out.

The rudder bias, EEC (Electronic Engine Computer), engine anti-ice, and APR (Auxiliary Power Reserve) checks are completed while we're holding short. Everything's working okay, for now. (APR is armed before every takeoff. It bumps the available static thrust up from 3,700lbs./side up to 3,880. Not much, but it could make the difference in wind shear or OEI scenarios. Arming the APR means that when a 5% difference in thrust between the two engines is detected, APR will automatically activate.)

I give a takeoff briefing - any abnormals, lights, or weird feelings below 80kts, and we'll abort. Between 80kts and V1, we'll only abort for engine failure, any fire, or loss of directional control. Above V1, we're committed to takeoff and will work on the problem in-flight, above 1,500 ft. AGL. This'll be a Flaps 15 takeoff. We're going to intercept the yadda-yadda radial, etc.

Cleared for takeoff, we roll out onto runway 13R. The first takeoff of the day is a great example of how a crew works. I use the tiller to control the NWS (Nosewheel Steering) and keep the pedals aligned with each other so small and gentle brake inputs can be made more equally. "You have the tops," I tell Eddie. He brings the control column back to about the midway position, as my right hand is on the power levers and my left is on the tiller. I bring the power levers all the way forward (from idle to the full power about 5 seconds) and release the brakes. "Arm APR and set time," I call. Eddie arms the APR and starts a countdown timer. We only have 5 minutes of APR available before we must turn it back off, should it activate.

"Airspeed alive, gauges in the green," calls Eddie.

We accelerate.

"80 knots, crosscheck," he says, and I bring my left hand up from the tiller to the yoke and say, "Checks, I have the tops." He releases the yoke and guards the flap lever. Now I'm steering the airplane with the rudder instead of NWS. I'm waiting for his V1/rotate call when the MWS (Master Warning System) flashers begin alternating, and the center annunciator panel lights up with numerous warnings. This is accompanied by a severe yawing moment. "Abort!" we both call.

I bring the power levers to idle. Simultaneously, Eddie brings the flap lever to the 45 deg. position. As this occurs, I bring my right hand to the airbrake (just to the left of the power levers) and pull all the way back until I hit a detent, then pull up and back. The first pull opens the airbrakes, while pulling up and over the detent activates "lift dump," which lowers the flaps to seventy-five degrees. Lift dump is unavailable unless the flap handle is in the Flaps 45 position, so Eddie's action on the flap lever is definitely required. I gently apply anti-skid braking with my toes and pop the thrust reverser piggybacks (which are mounted just forward of, and facing "down" from the power levers.) Two amber "Reverser Unlocked" lights illuminate just forward of the pedestal. About two seconds later, they switch to a green "REVERSER" indication, which tells me that the cascading translating assembly has opened sufficiently for a reverse thrust selection. Now I pull up gently on the piggybacks for reverse thrust, which helps us to decelerate.

"80 knots," Eddie calls.

"You have the tops," I reply, and move my left hand back down from the yoke to the tiller on the left side panel. Eddie grabs the control column again and keeps it in a neutral (upright) position. 80 knots is also a call to deselect reverse thrust, as you must be at idle reverse by 60 knots. Dropping the piggybacks down to their idle position spools them down to idle as the airplane decelerates through sixty knots.

As we roll to a stop, Eddie transmits to JFK tower: "Tower, Hawker 125. We've had to abort the takeoff roll. We need a tug, please."

One rejected takeoff down, two hours to go. Phew.

We taxi back (Mr. Quickwrench fixed us up again) and set up for another takeoff on 13R. The visibility's dropped down to 600RVR, or the distance of about three runway lights on either side of the airplane.

The normal takeoff is also a good example of a crew intermeshing and working together. After Eddie calls "V1, ROTATE" my right hand comes off the power levers - we're committed now, and I won't touch them again for awhile - and onto the yoke. I give the yoke a healthy, but smooth honk back to rotate up into my command bars, set to 12 degrees nose up ("Go-Around" mode on the Flight Director.)

"Positive rate," calls Eddie.

"Gear up," I reply.

"Gear up... " Eddie pauses as the gear thumps into the wells and the green/red lights extinguish one by one. "Gear indicates up."

We're quickly up through 400 feet. "400 feet," he calls.

"Flaps 0. Set climb power," I reply.

Eddie now brings the power levers back to 865 C ITT. The ITTs will continue to rise during the climb, so he'll make occasional tweaks as we climb out to keep the ITTs right at 865, which is an AFM limitation.

"Climb power set," he calls.

"Run the Afters, please." (Referring to the after takeoff and climb checklists.) Eddie disarms the APR, resets his clock, turns off the ignitions, engages the yaw damper and opens the Main Air Valves (a Brit term for pressurization bleeds) to the HP position. Up, up, and away we go.

All I've gotta do is fly the departure and keep the Flight Director up to date with the latest ATC instructions. Easy, breezy.

We intercept the JFK R-044 and climb in solid IMC up to 10,000 feet.

On a heading of 090, it's time for air work. Before that, we must perform an ICES check. The ICES check is much like a pre-maneuver checklist for airwork in piston trainers. I = Igniters on, C = Check and set Vref, E = Engine Synch OFF, and S = Stick Shakers, TEST. Since we won't ever actually stall this airplane, the stick shaker test in particular is very important - imagine actually pitching up and entering a stall rather than getting the shaker! The shaker activates approximately 7% higher than stall speed. Of course, we could use our AOA instrument, but I've found it to be more of a distraction than anything else during training. I don't pay much attention to it or the AOA index indicator on the glareshield.

We start with steep turns, which I brief. We'll do two 360s, one left, one right. Eddie will call out deviations from altitude and airspeed. I'll call for power in fuel flow increments. We'll aim to keep 220KIAS and 10,000 feet during the turns.

I roll in to 45 degrees of bank - "Add 200 lbs.," I call, and roll in 3 seconds of nose-up trim from the yoke trim switch. The key is to keep the apex of ADI airplane nestled into about a 4.5 degree nose-up attitude. As every pilot knows, steep turns require coordination of power, pitch, and bank. It's tougher to do in a 25,000 lb. airplane because when the ship begins accelerating in any axis, it takes a fair amount of opposite input to correct it and start trending in the opposite direction. Also, since it takes longer to spool up or down, it takes longer for power changes to "trend out" and truly take effect. The trick is to make power changes at the first sign of airspeed change, and to "wait out" the trend. Eddie makes callouts for me: "+20, decreasing. On altitude. +10. On altitude. Speed minus 3. -10, decreasing."

Steep turns complete, we move on to approaches to stalls.

Clean: power levers to idle, trim to keep 10,000 feet until 150 knots. At 150, the gear warning sounds (those Brits believe in VERY loud horns and bells), which I kill with an isolation button on the left power lever. This is also my cue to stop trimming to make my recovery easier. The goal is to maintain 10,000 throughout - from initiation to recovery. As I decelerate, I must raise the nose all the way up to approx. +15 degrees to keep from descending.

Eddie calls Vref. Just below that, I get the stick shaker. I bring the power levers full forward and maintain my attitude. Drop the nose 1-2 degree and you're guaranteed to get a nice descent which knocks you out of PTS contention. I roll in a bit of trim as the airplane powers out of shaker. At ref+20 I begin reducing power and keep pitching forward to maintain 10,000 feet.

The next approach to stall is the Takeoff config. stall. This is a flaps 15, gear up, 15 degree bank approach to stall with the same setup (idle power.) Finally, the landing config. stall, which we do at flaps 45, gear down, and 65% N1 (no descent rate.) These all go okay. Now, we get vectors to LGA for the NDB 22 approach.

ATC (Nick) radios us: "Hawker 125, turn right heading 250, descend and maintain 3,000 feet." Eddie acknowledges. I bring the power levers back to idle for the descent and kick the autopilot on. We're rolling out on the 250 heading when we get a TCAS warning followed by a call from ATC: "Hawker 125, crossing traffic ahead, caution wake turbulence." Of course, we can't see anything, we're solidly in the clouds. Uh oh, this is a setup for an upset recovery!

We don't have long to wait. We feel a brief buffet, then the nose pitches up wildly and we bank 30 degrees to the left. The proper recovery is max power, bank to 90 degrees, let the nose slice through the horizon, and recover to wings level as airspeed increases. We accomplish this without incident, although upsets always leave my head spinning - something about the instruments/monitors not agreeing precisely with the motion platform.

We set up for the NDB 22 approach. Eddie does all the hard work here; I simply fly the airplane. We're careful to set up for the miss (there's always a good chance of going missed on ANY approach during training) which involves flying a VOR radial to VERGE intersection and hold. At 3,000 feet, getting vectors to the IAF, I call for "Approach Checks." Eddie briefs the approach, sets the MDA in my the altitude alert window, sets the radar altimeter altitude on my ADI, sets Vref on my ASI (and his), turns the Igniters on, checks for fuel imbalance, turns off the Flight Deck Heat (aux. bleed) valve, makes sure my side panel is clear for NWS (nothing can block the tiller) and, of course, turns on the "Fasten Seatbelts" (Cabin Notices) sign. "Approach checks complete."

Nick the Examiner is no dummy. He's sure to fail my HSI so I can't use it to simply track a VOR radial which falls right on the NDB 22 final approach course. I still have my "strawberry," an ADF pointer on the HSI, and two dual-needle RMIs to work with, so this is not an issue.

We start the time at the FAF and head down to the MDA. At 2:00 minutes, the MAP, we see no sign of the airport and go missed. I activate 'Go-Around' mode on the FD, bring the power levers forward, call for flaps 15, and gear up at Eddie's "Positive rate" call. Eddie calls tower to inform them of our miss. At that precise moment, #2 flames out.

"#2 has failed," calls Eddie.

"Roger, close the bleeds, activate APR and declare an emergency," I reply. I punch the Cancel button for the MWS to dim the flasher. This is actually a rather calm time. We've been relieved of responsibility to do anything other than fly the plane back up to 1,500 AGL. "Also," I add, "ask them for a straight-out to 1,500 AGL rather than the published miss." I know, as I ask this, that "ATC" will probably say no and make us fly the published hold, but in an emergency in the real airplane we'd insist on getting a straight-out unless it was not feasible to do so for terrain or other overriding concerns.

"Negative, fly the published miss," comes the expected reply. I ask Eddie to set me up for the missed; I'm still concentrating totally on the six pack, maintaining V2. Performance is really bad today; I'm barely getting 300 fpm. But, the temps are quite warm and the airplane is loaded up, so this is not totally unexpected.

I keep the airplane nestled up into the command bars and make sure I keep my airspeed right at V2. This will give me the best possible climb performance. At 1,500 AGL, I accelerate to V2+6, which is Single-Engine Flap Retract speed, and call for Flaps Up. As we accelerate, I call for APR off. Now I'm pitching for Venr, which is single engine enroute climb speed. Venr is sort of a Vy speed, and V2 is sort of a Vx speed, for loose comparison. Finally, I can turn on the yaw damper and autopilot. I'm heading out to VERGE, which is 10.5 DME, and I've got about 5nm to go.

I glance at the two engine columns (FF, N1, ITT, N2) for the first time. #2 is indeed not producing power. I check right away for any fan or N2; if we have those, the engine is windmilling which means it may relight. If either N1 or N2 is stuck at zero, it's not a restartable engine. Both N1 and N2 are indicating, with N2 at about 10%, so I call for the engine shutdown and starter-assisted relight checklist. Eddie runs them while I fly.

Whenever we shut down an engine, it's always a two-man process. I start by bringing the power lever for the sick engine back to idle to verify we're shutting down the correct engine. No change. Per the checklist, Eddie calls, "Right HP cock, shut." I reply with "Guarding left, close the right." This is repeated with the right LP cock. Eddie goes about tripping off the #2 gen, closing the bus tie, killing the #2 alternator, engine synch, etc., etc. Finally he calls, "Engine Shutdown Complete." By this time I'm outbound for my teardrop entry to the hold. Since we've got N2, I call for the Starter-Assisted Relight Checklist. Eddie runs it, the engine starts up, and we get a vector out of the hold for the ILS RWY 4 at LGA.

This one is run just like before with the Approach and Landing Checks. We break out at minimums (seems every approach is always to mins in the sim!) and see the runway. I prepare to land when tower calls: "Hawker 125, go around, GO AROUND, equipment on the runway." Full power, I call for flaps 15, gear up at positive rate and we run the afters on the climbout. Looks like LGA isn't in the cards; a ground ops vehicle is stalled on the runway intersection. Damn them! On top of everything else, ATC calls to tell us they've lost radar contact. We're cleared direct to the JFK VOR for the full VOR 4L approach, circle to land 31R.

A word about circle-to-land approaches in the sim. They're DAMN hard, more of a dead-reckoning maneuver than a visual procedure. I felt that if I'd bust anything, this would be it. Since the monitors don't quite project a 180 degree view from the cockpit, you simply can't see your landing runway for much of the circling maneuver. You can't use the A/P, because it has an AFM limitation of >1,000 AGL for uncoupled approaches. The cloud bases are always just above the MDA, so if you try to keep it a little high you'll probably pop up into the clouds, have to fly a big circle to get on the published miss and do the whole darn thing again. And of course, PTS calls for -0 ft. for MDA tolerance. So this is where I really tried to drill down and focus on hand-flying the airplane.

We fly over the VOR outbound, descend to 1500, and prepare to make our procedure turn inbound. The approach checks completed, I call for flaps 15 on the procedure turn inbound and needle alive. At intercept, I call for gear down, and at CEDEB, the FAF, flaps 25. Fuel flows set at 400pph/side, down we go to MDA, hopefully to break out, see the airport, and begin our "dead reckoning" circle maneuver.

At 3.1 DME, we see 4L. I set the heading bug to 090, start the time, and wait 30 seconds before turning back to the left, perpendicular to 31R. We're now on a left base for a runway I can't see. I watch my RMI as it points to the JFK VOR which is located right on the field. As it passes off my wing, I call for flaps 45 and begin turning to the the left for final. The lead-in lights drift into view on the monitors and I call "runway in sight, out of minimums." This second call is more of a CYA, to limit my window of vulnerability for an MDA bust with the examiner. We land. I breathe a sigh of relief.

We taxi to the end, turn around, and prepare for a takeoff on 13L. On this takeoff, we get the classic V1 cut - as my hand is moving from the power lever to the yoke, the airplane yaws and the MWS lights up like a Christmas tree. Just like before, I pitch up into the command bars (12 degrees nose up), relax, and fly the airplane. I hold V2 as closely as I can up until 1500 AGL, where we again retract the flaps and take stock of our situation. This time, the N2 has frozen at zero - this engine won't relight. We accept radar vectors for a single-engine ILS RWY 22 at LGA.

This is one of those classic examiner 'traps.' First, the autopilot kicks off - fails - I'll need to hand-fly this approach. We complete our checks and start down the glideslope at flaps 25 and ref+20 (the extra speed will come in handy to convert into energy in the event we must go missed.) We get to minimums - no runway. Do we go missed single-engine, or continue? I wait a strategic one, two seconds, and then the runway threshold comes into view. We let down and land. The examiner is happy with my decision. "You'd already declared an emergency. This approach is being conducted in an emergency situation. You'd be a fool if you chose to go around single engine, just because the visibility isn't quite high enough." Good deal.

The weather magically clears up and we're cleared for a takeoff into night VMC conditions. (Pretty much everything in the sim is conducted either at night or in dusky sunset conditions.) We're given a simple heading/altitude departure clearance which will culminate in a visual approach back to our departure runway. We get vectors out for a 15 mile final. I call for flaps 15 and neither Eddie nor I are surprised when the flap indicator needle remains stuck at zero. This is actually a flap asymmetry, the only cause (per the AFM, anyway) of flap extension failure - the numerous backup systems would allow for us to pump the flaps down if need be, but a comparator system in the belly of the airplane determined that the flaps were headed for a 3.5-5 degree asymmetry and shut down immediately. We pull out the checklist, but we already know what it'll tell us to do - land at Flaps 0!

This visual approach, then, will be flown at Vref+30, crossing the threshold at +15. The checklist tells us to lower the nosewheel "immediately" after touchdown. Airbrakes will be available, but lift dump will not. Between the T/Rs, wheel brakes, airbrakes, and a long runway, we shouldn't have a problem getting the airplane stopped on the runway.

There's a helpful trick to dervive a visual approach 3 degree angle which we use for the flapless landing. It's a very simple and easy to use system. Any method involving mental math or any calculation whatsoever in the cockpit during emergencies is heavily discouraged. I am impressed at this concept and will employ it more in my piston flying, as well. The basic thinking here is that the human mind, under stress, just doesn't need any additional workload during an emergency, or the chances for making things worse is increased. We use the FMS to give us distance from the runway threshold and use a distance X 3 formula. For example, at 5nm out from the threshold, we should be at 1500 feet (5 X 3 = 15, add the two zeroes for the altitude.) Subtract 300 feet for each mile closer to the runway - 1200 feet at 4 miles, 900 feet at 3 miles, 600 feet and 2 miles, and 300 at 1. If you start at 1500 with an approx. 600fpm rate of descent, you'll shoot right on down like you're on a 3 degree glideslope. Eyeball the distances as you go and it's pretty easy to determine if you're high or low.

We use this to shoot our approach. We land. We stop. We shake hands. Everyone's happy.

And I'm tired. It's been a long, 9 hour checkride for both Eddie and myself. Eddie promises me a ride in his company's Twin Otter which flies Grand Canyon tours. I promise Eddie a ride in my company's Astar 350.

Now it's time for the best part - FINALLY going home.

Best regards to all!

-Ryan
 
WOW! Great write up. And I sure appreciate your attention to spelling, it made for a delightful read. You must be jacked up, how else would you have so much energy to write that great story after a long, stressful day?

Two Q:
1) Given that Flaps 45 is so important (for lift dump) what kind of callout between crew is there when the lever is put into that position?

2) With all that gadgetry in the cockpit you still time your MAP?

Well done and congratulations. Go get some sleep.
 
Last edited:
Whew! I'm exhausted just by reading the story... congrats !!!!
 
Richard said:
WOW! Great write up. And I sure appreciate your attention to spelling, it made for a delightful read. You must be jacked up, how else would you have so much energy to write that great story after a long, stressful day?

Thanks, Richard. I'm glad I wrote it up when I did. I just re-read it today and I'd already forgotten a bunch of those details.

Two Q:
1) Given that Flaps 45 is so important (for lift dump) what kind of callout between crew is there when the lever is put into that position?

2) With all that gadgetry in the cockpit you still time your MAP?

1) "Abort" is always pre-briefed for the PNF to move the flaps to 45.

2) Time is the only way to determine the MAP for that particular approach. Yup, after 5 years of essentially ignoring NDB approaches, I had to fly a bunch of them!

Take care,

Ryan
 
Pretty tough flying. Way worse than anything you'll probably see in the real world, as it should be.
Waytago Ryan.
 
Ryan Ferguson said:
1) "Abort" is always pre-briefed for the PNF to move the flaps to 45.

Even still, you better hope the PNF does at least this much of his duties for an aborted takeoff. I guess I just can't imagine being part of such a tight crew.

Ryan Ferguson said:
2) Time is the only way to determine the MAP for that particular approach. Yup, after 5 years of essentially ignoring NDB approaches, I had to fly a bunch of them!

I was thinking there would be an autotimer feature on the FMS instead of having to manually start the time.
 
Richard said:
Even still, you better hope the PNF does at least this much of his duties for an aborted takeoff. I guess I just can't imagine being part of such a tight crew.

You could easily do it. We'd brief the callouts (V1, rotate, V2), switching the tops, and reasons for abort. In the event of an abort, all you've gotta do is drop flaps 45.


I was thinking there would be an autotimer feature on the FMS instead of having to manually start the time.

My KLN-94 is more full-featured than this FMS, except that it doesn't have GPSS outputs. For the checkride, we did most everything the old-fashioned way.
 
Ryan;
Great story. Congrats. That sounded like quite a workout. Now, back home and have a great fathers day.
 
Ryan,


Awesome write up. Can't wait for something like that myself. Congrats and be safe.
 
Back
Top